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a b s t r a c t

In order to use environmental models effectively for management and decision-making, it is vital to
establish an appropriate level of confidence in their performance. This paper reviews techniques avail-
able across various fields for characterising the performance of environmental models with focus on
numerical, graphical and qualitative methods. General classes of direct value comparison, coupling real
and modelled values, preserving data patterns, indirect metrics based on parameter values, and data
transformations are discussed. In practice environmental modelling requires the use and implementation
of workflows that combine several methods, tailored to the model purpose and dependent upon the data
and information available. A five-step procedure for performance evaluation of models is suggested, with
the key elements including: (i) (re)assessment of the model’s aim, scale and scope; (ii) characterisation of
the data for calibration and testing; (iii) visual and other analysis to detect under- or non-modelled
behaviour and to gain an overview of overall performance; (iv) selection of basic performance criteria;
and (v) consideration of more advanced methods to handle problems such as systematic divergence
between modelled and observed values.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Quantitative environmental models are extensively used in
research, management and decision-making. Establishing our
confidence in the outputs of such models is crucial in justifying
their continuing use while also recognizing limitations. The ques-
tion of evaluating a model’s performance relative to our
ct of the knowledge platform
review process is twofold e
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understanding and observations of the system has resulted inmany
different approaches and much debate on the identification of
a most appropriate technique (Alexandrov et al., 2011; McIntosh
et al., 2011). One reason for continued debate is that performance
measurement is intrinsically case-dependent. In particular, the
manner inwhich performance is characterised depends on the field
of application, characteristics of the model, data, information and
knowledge that we have at our disposal, and the specific objectives
of the modelling exercise (Jakeman et al., 2006; Matthews et al.,
2011).

Modelling is used across many environmental fields: hydrology,
air pollution, ecology, hazard assessment, and climate dynamics,
to name a few. In each of these fields, many different types of
models are available, each incorporating a range of characteristics
to measure and represent the natural system behaviours.
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Environmental models for management typically consist of
multiple interacting components with errors that do not exhibit
predictable properties. This makes the traditional hypothesis-
testing associated with statistical modelling less suitable, at least
on its own, because of the strong assumptions generally required,
and the difficulty (sometimes impossibility) of testing hypotheses
separately. Additionally if a single performance criterion is used, it
generally measures only specific aspects of a model’s performance,
which may lead to counterproductive results such as favouring
models that do not reproduce important features of a system (e.g.,
Krause et al., 2005; Hejazi and Moglen, 2008). Consequently,
systems of metrics focussing on several aspects may be needed for
a comprehensive evaluation of models, as advocated e.g., by Gupta
et al. (2012).

It is generally accepted that the appropriate form of a model will
depend on its specific objectives (Jakeman et al., 2006), which often
fall in the broad categories of improved understanding of natural
processes or response to management questions. The appropriate
type of performance evaluation clearly depends on the model
objectives as well. Additionally, theremay be several views as to the
purpose of a model, and multiple performance approaches may
have to be used simultaneously to meet the multi-objective
requirements for a given problem. In the end, the modeller must
be confident that a model will fulfil its purpose, and that a ‘better’
model could not have been selected given the available resources.
These decisions are a complex mixture of objectively identified
criteria and subjective judgements that represent essential steps in
the cyclic process of model development and adoption. In addition,
the end-users of a model must also be satisfied, and may not be
comfortable using the same performance measures as the expert
modeller (e.g., Miles et al., 2000). It is clear that in this context,
a modeller must be eclectic in choice of methods for characterising
the performance of models.

Regardless, assessing model performance with quantitative
tools is found to be useful, indeed most often necessary, and it is
important that the modeller be aware of available tools. Quantita-
tive tools allow comparison of models, point out where models
differ from one another, and provide somemeasure of objectivity in
establishing the credibility and limitations of a model. Quantitative
testing involves the calculation of suitable numerical metrics to
characterise model performance. Calculating a metric value
provides a single common point of comparison between models
and offers great benefits in terms of automation, for example
automatic calibration and selection of models. The use of metric
values alsominimises potential inconsistencies arising from human
judgement. Because of the expert knowledge often required to use
these tools, the methods discussed in this paper are intended for
use primarily by modellers, but they may also be useful to inform
end-users or stakeholders about aspects of model performance.

This paper reviews methods for quantitatively characterising
model performance, identifying key features so that modellers can
make an informed choice suitable for their situation. A classifica-
tion is used that cuts across a variety of fields. Methods with
different names or developed for different applications are
sometimes more similar than they at first appear. Studies in one
domain can take advantage of developments in others. Although
the primary applications under consideration are environmental,
methods developed in other fields are also included in this review.
We assume that a model is available, along with data representing
observations from a real system, that preferably have not been
used at any stage during model development and that can be
compared with the model output. This dataset should be repre-
sentative of the model aims; for instance it should contain flood
episodes or pollution peaks if the model is to be used in such
circumstances.
The following section provides a brief view of how character-
isation of model performance fits into the broader literature on the
modelling process. Section 3 reviews selection of a so-called ‘vali-
dation’ dataset. In Section 4, quantitative methods for character-
ising performance are summarized, within the broad categories of
direct value comparison, coupling real and modelled values,
preserving data patterns, indirect metrics based on parameter
values, and data transformations. Section 5 discusses how quali-
tative and subjective considerations enter into adoption of the
model in combination with quantitative methods. Section 6 pres-
ents an approach to selecting performance criteria for environ-
mental modelling. Note that a shorter and less comprehensive
version of this paper was published as Bennett et al. (2010).
2. Performance characterisation in context

With characterisation of model performance being a core part of
model development and testing, there is naturally a substantial
body of related work. This section presents some key links between
similar methods that have developed separately in different fields.
In many of the fields of environmental modelling, methods and
criteria to judge the performance of models have been considered
in the context of model development. Examples include work
completed for hydrological models (Krause et al., 2005; Jakeman
et al., 2006; Moriasi et al., 2007; Reusser et al., 2009), ecological
models (Rykiel, 1996) and air quality models (Fox, 1981; Thunis
et al., 2012). The history of methods to characterise performance
dates back at least a few decades (see, for instance Fox, 1981;
Willmott, 1981) and makes use of artificial intelligence (Liu et al.,
2005) and statistical models (Kleijnen, 1999), while efforts to
standardise them extensively and include them in a coherent
model-development chain are more recent. For instance, in
hydrology, previous work has been completed on general model-
ling frameworks that consider performance criteria as part of the
iterative modelling process (Jakeman et al., 2006; Refsgaard et al.,
2005; Wagener et al., 2001). Stow et al. (2009) present
a summary of metrics that have been used for skill assessment of
coupled biological and physical models of marine systems. Studies
have also focused explicitly on performance criteria, such as
Moriasi et al. (2007) and Dawson et al. (2007, 2010), who produced
guidelines for systematic model evaluation, including a list of rec-
ommended evaluation techniques and performance metrics. Beck
(2006) provides a survey of key issues related to performance
evaluation. And Matott et al. (2009) reviewed model evaluation
concepts in the context of integrated environmental models and
discussed several relevant software-based tools.

Some official documents on model evaluation have also been
produced by governing agencies. Among these, some are particu-
larly detailed, e.g., “Guidance on the use of models for the European
Air Quality Directive” (FAIRMODE, 2010), the “Guidance for Quality
Assurance Project Plans for Modelling” (USEPA, 2002) and the
“Guidance on the Development, Evaluation, and Application of
Environmental Models” (USEPA, 2009). This paper, by contrast,
focuses on graphical and numerical methods to characterise model
performance. The domain-specific reviews are synthesised for
a broader audience. Use of these methods within the modelling
process is only briefly discussed, and the reader is directed to other
references for more detail. Finally, a philosophical debate has aimed
to differentiate verification from validation (Jakeman et al., 2006;
Oreskes et al., 1994; Refsgaard and Henriksen, 2004). We, however,
focus on summarizing methods to characterise performance of
environmental models, whether these methods and criteria are
used for verification, validation or calibration instead of continuing
this debate.
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While this paper focuses mainly on model evaluation by
comparison to data, the reader should be aware of cases where this
is not possible due to the nature of the analysis or the stage of
modelling. For example, such evaluation techniques are not
possible for qualitative conceptual models built in participatory
modelling frameworks to establish a common understanding of the
system. The methods presented may not be sufficient for complex
situations, for example where the identification of feedbacks and
relationships between different environmental processes across
spatial and temporal scales is of specific interest. Untangling
feedbacks, especially in highly complex and spatially interrelated
systems, remains a big challenge (Seppelt et al., 2009). Also,
performance in future conditions cannot be directly assessed as
available data may not be representative; this is particularly the
case where the model includes an intervention that will change the
behaviour of the system.

Data-based performance measures are only a small part of
quality assurance (QA) in modelling (Refsgaard et al., 2005).
Guidelines and tools such as those produced by RIVM/MNP (van der
Sluijs et al., 2004), the HarmoniQuA project (Henriksen et al., 2009)
and Matott et al. (2009) generally cover the qualitative definition of
the model requirements and stakeholder engagement, in addition
to the quantitative measures discussed in this paper. A consistent
procedure for characterising performance over the entiremodel life
cycle can facilitate QA by providing clarity, and hence increased
knowledge and confidence in developing and selecting the most
appropriate model to suit particular goals. This can also benefit
future model reuse and application.

The paper will not discuss formal methods for sensitivity or
uncertainty analysis, though these aspects are recognised as central
in the modelling process. Sensitivity analysis assesses how varia-
tions in input parameters, model parameters or boundary condi-
tions affect the model output. For more information on sensitivity
analysis, see Saltelli et al. (2000), Norton (2008), Frey and Patil
(2002), Saltelli and Annoni (2010), Shahsavani and Grimvall
(2011), Makler-Pick et al. (2011), Yang (2011), Nossent et al.
(2011), Ratto et al. (2012) and Ravalico et al. (2010). Uncertainty
analysis as generally understood is concerned with establishing
bounds around point predictions, from either deterministic anal-
ysis based on model-output error bounds or probabilistic analysis
yielding confidence intervals. While this is often a useful measure
of model performance, related methods have already been
reviewed elsewhere (e.g., Beven, 2008; Keesman et al., 2011; Vrugt
Table 1
Examples of data-division methods for model testing.

Type Name Description

No independent data testing Re-substitution The same dat
will be the sa
overestimate
rigorous, and

Cross-validation Hold out method The data are
position of th
of the testing

K-fold partitioning Data split int
The hold out
(Kohavi, 1995

Leave one out (LOOCV) Here n � 1 d
validation. Th

Bootstrapping Bootstrappin
(input and ou
distribution o
distributed (i
One method
the blocks ar
using replica
et al., 2009). A distinct set of measures can be used to evaluate
interval or probabilistic predictions. While not covered in this
paper, the reader is referred to a number of useful reviews (Laio and
Tamea, 2007; Gneiting and Raftery, 2007; Murphy and Winkler,
1987; Christoffersen, 1998; Boucher et al., 2009).

We stress the distinction between characterising performance
and adoption or rejection of the model by the modeller and end-
user. This paper discusses objective measures to assist the first,
though the application of measures and their interpretation have
a subjective element. The second is completely subjective and may
include factors not strictly connected to the measured performance
of the model such as costs, simplicity, applicability, intelligibility by
the user(s), or how the model is presented. The adoption of a model
(or confidence or trust in its ability to provide meaningful insights)
is the output of a subjective, typically qualitative and often hidden,
psychological or sometimes political process. The implications of
this distinction are discussed further in Section 5. This choice can,
however, be made more objective by defining benchmarks that can
help evaluating models in a comparative way, as advocated for
example by Seibert (2001), Matott et al. (2012) and Perrin et al.
(2006a, 2006b).

3. Data for characterising performance

Themost important component of quantitative testing is the use
of observational data for comparison. However, some of the data
must be used in the development and calibration (if required) of
the model. This necessitates the division of available data to permit
development, calibration and performance evaluation. Common
methods for this division are presented in Table 1 and include
cross-validation and bootstrapping. In cross-validation, the data are
split into separate groups for development and testing, whereas
bootstrapping involves repeated random sampling with replace-
ment of the original measurements. In spatial modelling, the
concept of data division can include separation using both temporal
and spatial subdivision. Instead of segmenting a single set of time
domain data, a set of spatial data can be removed for testing; for
example, distributed hydrological models can be tested by leaving
out one gauge at a time. In using such techniques, it is important to
consider the degree to which the verification or validation data are
independent of the calibration data e for instance, leaving out one
gauge will not allow a meaningful test when gauges are closely
spaced along a single stretch of river.
a are used for development and testing. Therefore, the performance evaluation
me as the calibration evaluation and model performance is likely to be
d because the model has been ‘tuned’ to the results. This approach is the least
should be avoided.
split into two groups, one for development and one for testing. The size and
e group splitting will affect both the performance of the model and the accuracy
(Kohavi, 1995).
o k sets, one set is used for training, the remaining k � 1 sets used for testing.
method can then be repeated k times allowing all results to be averaged
).
ata points are used for model development and only one point is used for
is is repeated for all data points, each one in turn being left out (Kohavi, 1995).
g involves random re-sampling with replacement of the original measurements
tput). This can be repeated multiple times to estimate the error (bootstrap)
f the model. However, it is essential to have identically and independently
.i.d.) residuals, so some estimated transformation of model errors is required.
suggested for time series (or non i.i.d.) data is to use a blocks method where
e randomly re-sampled with replacement. Kleijnen (1999) suggests a method
ted runs.
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Selecting a “representative” set of data that sufficiently
captures the key patterns in the data involves many consider-
ations, for example, the sampling method, the heterogeneity of the
measure, and sources of sampling errors; for further discussion
see Cochran (1977), Gy (1998) and Nocerino et al. (2005). One may
want to test the ability of the model to generalise, i.e. its ability to
predict sufficiently accurately for a given purpose, even in condi-
tions that were not observed during model development. Ideally,
model results are compared to unseen data from the past that
capture the conditions that the model will be used to predict.
Models are often used to simulate extreme conditions; for such
cases the testing data should include the relevant conditions, for
example, data that covers a particularly warm or wet period.
Models are more likely to fail against such testing data if calibrated
primarily over less extreme periods, but will provide greater
confidence if successful (e.g., Robson and Hamilton, 2004;
Andréassian et al., 2009; Coron et al., 2012; Seiller et al., 2012). In
other cases, however, the data available do not sufficiently cover
the prediction conditions, so confidence in the model performance
should instead be built by looking at components of the overall
model or generating suitable artificial “data” sequences. Such
artificial data sequences may be generated with a more sophisti-
cated (and more expensive or difficult to use) model in which
confidence has already been established through other means
(e.g., Raick et al., 2006; Littlewood and Croke, 2008); for example,
a flow-routing model may be tested against output from a detailed
computational fluid dynamics model. Whatever the case, the
decision of what is representative is subjective and strongly linked
to the final aim of the model.

Metrics typically calculate a single value for the whole dataset,
which can disguise significant divergent behaviour over the time
intervals or spatial fields (see for example Berthet et al., 2010;
Moussa, 2010). To prevent this, evaluation can instead be on a local
basis (e.g., pixel to pixel or event to event). Data may be partitioned
a priori, using some external information about, for instance, the
season or the specific spatial domain, or they can be separated into
low, medium, and high events (Yilmaz et al., 2008) or, in hydrology,
into rising-hydrograph and falling-hydrograph components, each
with its own performance criteria. A more complex partitioning
scheme in hydrology suggested by Boyle et al. (2000) involves
splitting the data into components driven by rainfall, interflow and
baseflow components. As another alternative, Choi and Beven
(2007) use a multi-period framework, where a moving window
of thirty days is used to classify periods into dry, wetting, wet and
drying climate states.

Automatic grouping methods may be used to select approxi-
mately homogeneous regions or regions of interest from the orig-
inal data to assess model performance under different conditions.
Wealands et al. (2005) studied the methods used in image pro-
cessing, landscape ecology and content-based image retrieval
among others, and recommended several methods as potentially
useful for application to spatial hydrological models. They recom-
mend a clustering method that starts with all the pixels as separate
regions, which are then merged wherever the gradient in the
variable of interest is below a threshold. Merging is continued in an
iterative process until no neighbouring regions satisfy the criteria
for merging. Further control of the regions can be achieved by
imposing additional criteria, for example criteria on the desired
shape, size and roundness of the regions (Wealands et al., 2005).

Evidently any of these methods can be used in both the time and
spatial domains, but sometimes it is necessary to consider both
spatial and temporal performance, which may require the selection
of a 4-dimensional dataset to allow a combination of spatial
mapping of temporally averaged metrics and time-series repre-
sentation of spatially averaged metrics (e.g., Robson et al., 2010).
It is important to realise that, just as the model output is not the
same as the true state of the environmental system, neither is the
observational dataset. Rather, the observational data provide
(imperfect) evidence regarding the true state of the system.
Measurement errors, spatial and temporal heterogeneity at scales
below the resolution of measurements, and the distinction
betweenwhat is measured (e.g., chlorophyll a or even fluorescence)
and what is modelled (e.g., phytoplankton concentrations con-
verted to approximate chlorophyll concentration for comparison
purposes) all contribute to the error and uncertainty in the degree
to which the observational data reflect reality. What this means for
assessing model performance is that not only is it almost impos-
sible to achieve an exact match betweenmodel and data, it may not
even be desirable. Bayesian techniques for parameter estimation
and data assimilation can allow for this by treating both the model
and the data as priors with different degrees of uncertainty (Poole
and Raftery, 2000). When using non-Bayesian approaches, a mod-
eller should aim to understand the degree of error inherent in the
data before setting performance criteria for the model.

4. Methods for measuring quantitative performance

Quantitative testing methods can be classified in many ways.
We use a convenient grouping based on common characteristics.
Direct value comparison methods directly compare model output
to observed data as a whole (4.1). These contrast with methods that
combine individual observed and modelled values in some way
(4.2). Within this category, values can be compared point-by-point
concurrently (4.2.1), by calculating the residual error (4.2.2), or by
transforming the error in some way (4.2.3). The relationship
between points is considered in methods that preserve the data
pattern (4.3). Two completely different approaches measure
performance according to parameter values (4.4), and by trans-
formation of the data to a different domain (4.5), a key example
being the use of Fourier transforms.

4.1. Direct value comparison

The purpose of direct value comparison methods is to test
whether the model output y (the elements of an array of dimension
1e4 depending on the number of independent variables: time and/
or one or more spatial coordinates) shows similar characteristics as
awhole to the setof comparisondata by (having the samedimensions
but not necessarily the same granularity). The simplest direct
comparison methods are standard summary statistics of both y
and by shown in Table 2. Clearly, one would like the summary
statistics computed on y to be very close in value to those computed
on by. Common statistical metrics that can be used for the direct
comparisonofmodels and testdata include themean,mode,median
and range of the data. The variance, a measure of the spread of the
data, is often computed. Higher-order moments, such as kurtosis
and skew, could also potentially be used for comparison.Note that in
comparing model and observation, statistical properties may be
complicated by different support scales: for instance, if the model
resolution means that it is averaging over a 1 km grid and a 1 day
time-step, whereas observations depend on instantaneous 100 mL
water samples, a lower variance might legitimately be expected in
the model results, without invalidating the model.

A related method involves comparison of empirical distribution
functions, plotted as continuous functions or arranged as histo-
grams. Often the cumulative distributions of the modelled output
and the observed data are estimated according to Equation (2.9) in
Table 2. The two distributions can then be directly compared. When
time is the only independent variable, the cumulative distribution
can be interpreted as a “duration curve” showing the fraction of



Fig. 1. Empirical cumulative distribution function used for model validation. The flow
duration curve is calculated for a rainfallerunoff model, IHACRES (Jakeman et al.,
1990). In a standard plot (top) it is difficult to distinguish between results. By using
a log transform on the y-axis (bottom) significant divergent behaviour can be observed
by Model 3 at low flow levels.

Table 2
Details of methods for direct comparison of models, where n is the number of observations of y and yi is the ith observation.

ID Name Formula Notes

2.1 Comparison of scatter plots w Look for curvature and dispersion of plots (Figs. 2 and 3).

2.2 Mean y ¼ 1
n

Xn
i¼1

yi Calculation of the expected values of modelled and measured data. Need to
consider the effect of outliers on each calculation.

2.3 Mode w Calculation of most common value in both modelled and measured data.
2.4 Median w Unbiased calculation of ‘middle’ value in both modelled and measured data.
2.5 Range max(y)emin(y) Calculates the maximum spread of data, may be heavily affected by outliers.

2.6 Variance s2
1
n

Xn
i¼1

ðyi � yÞ2 Provides a measure of how spread out the data are.

2.7 Skew

1
n

Xn
i¼1

ðyi � yÞ3

 
1
n

Xn
i¼1

ðyi � yÞ2
!3=2 A measure of the asymmetry of the data, skew indicates if the mean of the data

is further out than the median. A negative skew (left) has fewer low values and
a positive skew (right) has fewer large values.

2.8 Kurtosis

1
n

Xn
i¼1

ðyi � yÞ4

 
1
n

Xn
i¼1

ðyi � yÞ2
!2 � 3 Kurtosis is a measure of how peaked the data is. A high kurtosis value indicates

that the distribution has a sharp peak with long and fat tails.

2.9 Cumulative distribution Fn
�
x
� ¼ 1

n

Xn
i¼1

Iðyi � xÞ Empirical distribution of data, compare graphically on normal or logarithmic axis
(Fig. 1). Or create a simple error metric.

2.10 Frequency distribution plot, histogram w Separate the data into classes, and count the number or percentage of data points
in each class.

2.11 Comparison of autocorrelation and
cross-correlation plots

w Graphically compare correlation functions derived from observed and modelled
data (or create simple error metrics) to establish whether the model system
accurately reflects patterns in the expected direction of change.
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time for which the variable exceeds a given value. This interpre-
tation is often useful when the modelled system is going to be used
for production (e.g., river flow for water supply, wind speed
for a wind generator). Fig. 1 shows the use of a floweduration curve
in hydrological modelling. A logarithmic transformation can be
used to highlight the behaviour of the data for smaller events.
Yilmaz et al. (2008) present a number of hydrological “signature
measures” making use of the floweduration curve. Simple metrics
can be calculated by sampling the curve at specific points of
interest. For instance, the duration of time below a certain water
level may help in evaluation of model behaviour in low-flow
conditions, or the interval above a certain pollution concentration
to evaluate performance for dangerous pollution episodes. The
integral of the cumulative distribution between two points
provides another potential metric. SOMO 35 (sum of daily
maximum 8-h values exceeding 35 ppb) and AOT40 (sum of the
positive differences between hourly concentration and 40 ppb) are
examples of this metric for ozone air pollution.

To generalise from these common examples, many summary
measures can be calculated from a given dataset. Comparing them
to the same summary measures calculated from the model output
provides a (possibly graphical) measure of performance. For
example, an autocorrelation or cross-correlation plot of a time
series provides information about the relation between points over
time within the dataset, whereas box (or box-and-whisker) plots
provide a convenient visual summary of several statistical proper-
ties of a dataset as they vary over time or space. We expect that the
plots from the modelled and observed datasets would be similar,
and differences may help identify error in the model or data. Cross-
correlations will be discussed again later in the context of residuals.
There is an important distinction between the two applications.
The methods in this section do not directly compare individual
observed and modelled data points. They are therefore suited to
evaluate properties and behaviours of the whole dataset (or chosen
subsets).



Fig. 3. Scatter plots can reveal underlying behaviour of the model, including bias or
non-constant variance. Data in this example were from a random number generator
with appropriate relations to introduce bias.
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4.2. Coupling real and modelled values

These methods consider the pairs of values yi and byi for the
same point in time or space, i, where yi is the observed value and byi
is the modelled value. These methods often explicitly compute
their difference, the residual or error.

4.2.1. Concurrent comparison
The simplest method is the scatter plot (Figs. 2 and 3), where the

modelled output values are plotted against the corresponding
measured data. An ideal, unbiased model would yield a unity-slope
line through the origin; the scatter of the points about the line
represents the discrepancy between data and model. Systematic
divergence from the line indicates unmodelled behaviour. This
graph (with arithmetic or logarithmic scales) is ideal for comparing
model performance at low, medium, and high magnitudes, and
may well reveal that the model underestimates or overestimates in
a certain range if most points lie below or above the line.

The scatter plot can be analysed by computing the statistical
properties of the observed data/model data regression line, through
an F-statistic function of the regression line coefficients (slope and
intercept in ID 3.10, Table 3). This function provides a way of
checking whether the regression line is statistically similar to the
1:1 line (perfect agreement) (Haefner, 2005). A drawback of this
method is that the time-indexing of the data is lost.

An additional test is linear regression analysis on the measured
data and model output (Table 3, ID 3.10). When used for hypothesis
testing, there are strict requirements for the residuals to be iden-
tically and independently (normally) distributed (i.i.n.d). The zero
intercept and unit slope of a perfect model can be contrasted with
the actual intercept and slope to check if the difference is statisti-
cally significant (e.g., with Student’s t-statistic) or to evaluate the
significance of any bias. In hypothesis testing, this significance test
is often found to be inadequate, resulting in incorrect acceptance or
rejection. However, even if these requirements are not met, it may
still be informative for model performance comparison. Kleijnen
et al. (1998) proposed a new test where two new time series are
created: the difference and the sum of the model and observed
values (Table 3, ID 3.12). A regression model is fitted between these
new time series; an ideal model has zero intercept and unit slope,
since the variables will have equal variances only if their sum and
variance are uncorrelated.
Fig. 2. Scatter plot used for model verification. Modelled and observed data are plotted
against each other, residual standard deviation (red) or percentage variance (blue)
lines can be plotted to assist in interpretation of the results. Data in this example were
from a random number generator. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Among the methods coupling real and modelled values, many
are based on a table reporting their behaviour in important cases
or events, typically passing a specified threshold (commonly
referred to as an “alarm” or “trigger” value representing, for
instance, a flood level or a high pollution episode). The contin-
gency table (Fig. 4) reports the number of occurrences in which
real data and model output were both above the threshold (hits),
the number in which they were both below (correct negative), the
number of alarms missed by the model (misses) and that of false
alarms. A perfect model would have data only on the main
diagonal. The numbers in the other two cells are already possible
metrics for evaluating model under-estimation (high misses) or
over-estimation (high false alarms). Many other metrics can be
derived from the contingency table (see Ghelli and Ebert, 2008);
some are summarized in Table 3. The main purpose of these
metrics is to condense into a single number the overall behaviour
of the model in terms of critical conditions. If one wants to work
on single events, then a quantitative measure of the difference
between model and data can also be measured, such as metrics
PDIFF and PEP (defined in Table 3, ID 3.8 and 3.9, respectively).

Consideringmore categories beyond simple occurrence or not of
an event can extend this approach. This is so when more than one
threshold is defined (e.g., attention and alarm levels) or in spatial
problems where points can belong to several different classes. The
matrix built in these cases is often termed the “confusion matrix”
(Congalton, 1991), comparing the observed and modelled data
(Fig. 5) in each category. From the matrix, the percentage of correct
identification for one or all categories or other indices in Table 3 can
be calculated.

A criticism of these methods is that they do not account for
random agreement. A simple metric that tries to account for
predictions that are correct by chance is the Kappa statistic (Table 3,
ID 3.13). It compares the agreement between the model and
observed data against chance agreement (the probability that the
model and data would randomly agree). The statistic can confirm if
the percentage correct exceeds that obtained by chance. However,
the chance percentage can provide misleading results as a low
kappa (i.e. 0) could result for a model with good agreement if one
category dominates the data. For example, if there are few obser-
vations in one category, then the model may completely fail to
identify this category while maintaining a high number of correct
identifications for the others.

Originally used in image processing, the ‘Information’ MSE
(IMSE) aims at accounting for a subset of data that is more signif-
icant, for example, special areas which have higher environmental



Table 3
Details of metrics that compare real and modelled values concurrently.

ID Name Formula Range Ideal
value

Notes

3.1 Accuracy
(fraction correct)

hitsþ correct negatives
total

(0, 1) 1 It is heavily influenced by the most common category,
usually “no event”.

3.2 Bias score
(frequency bias)

hitsþ false alarms
hitsþmisses

(0,N) 1 Measures the ratio of the frequency of modelled events to
that of observed events. Indicates whether the model has
a tendency to underestimate (BIAS < 1) or overestimate
(BIAS > 1).

3.3 Probability of
detection (hit rate)

hits
hitsþmisses

(0, 1) 1 Sensitive to hits, but ignores false alarms. Good for rare
events.

3.4 False alarm ratio
false alarms

hitsþ false alarms
(0, 1) 0 Sensitive to false alarms, but ignores misses.

3.5 Probability of false
detection (false
alarm rate)

false alarms
correct negativesþ false alarms

(0, 1) 0 Sensitive to false alarms, but ignores misses.

3.6 Threat score (critical
success index, CSI)

hits
hitsþmissesþ false alarms

(0, 1) 1 Measures the fraction of observed cases that were correctly
modelled. It penalizes both misses and false alarms.

3.7 Success index
1
2

�
hits

hitsþmisses
þ correct negatives

observed no

�
(0, 1) 1 Weights equally the ability of the model to detect correctly

occurrences and non-occurrences of events.

3.8 PDIFF Peak Difference maxðyiÞ �maxðbyiÞ e 0 Compares the two largest values from each set, should be
restricted to single event comparisons (Dawson et al., 2007).

3.9 PEP Percent Error in
Peak

maxðyiÞ �maxðbyiÞ
maxðyiÞ

*100 (0, 100) 0 Percent error in peak is similar to the PDIFF (3.8) calculation
except it is divided by the maximum measured value. Only
suitable for single events (Dawson et al., 2007).

3.10 F-statistic of the
regression line

F2;n�2;a ¼ na2 þ 2aðb� 1ÞPn
i¼1 xi þ ðb� 1Þ2Pn

i¼1 x
2
i

2S2yx
Analyse the coefficients (a,b) of the data/model output
regression line at the a level of confidence.

3.11 Regression analysis
(basic)

y ¼ b0 þ b1by (�1, 1) 1 Perform a simple linear regression to calculate b0 and b.
Ideal values are b0 ¼ 0 and b1 ¼ 1.

3.12 Regression analysis
(novel)

di ¼ yi � byi
ui ¼ yi þ byi
di ¼ g0 þ g1ui

e e Perform a simple linear regression to calculate g0 and g1.
Ideal values are g0 ¼ 0 and g1 ¼ 0 (Kleijnen et al., 1998).

3.13 Kappa statistic k
PrðaÞ � PrðcÞ
1� PrðcÞ (�1, 1) 1 Pr(a) is the relative agreement and Pr(c) is the hypothetical

probability that both would randomly agree. A value close
to zero indicates that the majority of agreement may be due
to chance.

3.14 Information Mean
Square Error (IMSE)

1
N

X
x;y

ðAðx; yÞIðx; yÞ � bAðx; yÞbIðx; yÞÞ2
I
�
i
� ¼ logn

1
PðiÞ; P

�
i
� ¼ ni

N

(0,N) 0 A is the spatial field, I is the information weighting field
calculated from a single event grid, P is the probability of
occurrence of a given value bin, i is the bin number, ni is
the total number of grid values in the bin and N is the total
number of pixels.

3.15 Fuzzy maps e e e Use of fuzzy relational characteristics to evaluate
categorisation models. Different categories and locations
are weighted by their relationship.
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importance. Tompa et al. (2000) select the weighting of the MSE
from an ‘event of importance’. Spatial results are split into groups
from which weighting according to the probability of the event
(pixel value) occurring is calculated. Here, pixels with a low prob-
ability of occurrence receive higher weighting (e.g., peak or very
low events). The ‘event of importance’ will significantly affect the
outcome and must be chosen with care.

For some categorical models, some categories may be more
strongly related than others, representing a smaller error. Similarly
a small position error may not be very significant and should not be
treated as total disagreement. Fuzzy sets allow the expression of
a degree of membership of a category. A common application is the
use of fuzzy maps, with special relationship weights defined for
locations and categories (Wealands et al., 2005).

Traditionally, the Kappa statistic has been a standard for
comparison in spatial models. It has been criticized for inability to
track the location of error (Kuhnert et al., 2006), and more recently
Pontius and Millones (2010) have pronounced “death to Kappa”



Fig. 4. Standard structure of a contingency table.

Fig. 6. Residual plot showing the residuals of the model plotted against the descriptor
variable (time). A uniform spread of residuals is expected (top), and systematic changes
over time indicate unmodelled behaviour (bottom). Data in this example were
artificial.
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and declared the “birth of Quantity Disagreement and Allocation
Disagreement for Accuracy”. Kuhnert et al. (2006), and earlier
Costanza (1989), also insisted that comparisons based on visual
proximity, using a sliding window or expanding window
approaches, are more reliable for estimating allocation errors (see
Seppelt and Voinov, 2003 for applications).

As a further extension, it may be possible to remove the effect of
a well-understood error, to allow errors of different origins to be
quantified. Pontius (2004) presents a method for spatially explicit
land-change models. Once an initial error calculation has been
completed, the maps are adjusted to remove location and magni-
tude errors.

4.2.2. Key residual methods
By far the most prevalent methods for model evaluation are

residual methods, which calculate the difference between observed
and modelled data points. The residual plot (Fig. 6) and the QQ plot
(Fig. 7) are two simple graphical methods to analyse model
residuals.

The residual plot is a plot of residual error as dependent variable
and a chosen descriptor variable (e.g., time or location). The plot
reveals unmodelled behaviour when there is systematic divergence
from zero. For instance, high density of negative values indicates
that the model tends to underestimate correct values (in that time
or place). If residuals are due to unsystematic measurement error
alone, thenwemay expect them to be normally distributed. The QQ
plot (Fig. 7) tests whether or not the distribution of residuals
approximates normality. The quantiles of the residuals are plotted
against the Gaussian quantiles. Deviations from a straight line
indicate the distribution of residuals is skewed towards larger or
smaller values and whether it has a relatively ‘peaky’ or flat
distribution.

The statistical significance of the QQ plot derived from a given
cumulative distribution can be assessed with the Kolmogorove
Smirnov (KS) or the Lilliefors tests for a given level of confidence.
The KS test checks the hypothesis that the two datasets come from
the same distribution, whatever it is, whereas the Lilliefors test
does the same, but is limited to the Gaussian distribution. This
Fig. 5. Example of confusion matrix where categorical results are tabulated.
latter test is particularly robust because it does not require one to
estimate the null distribution, whereas in the KS test the reference
distribution must be provided.

Of the many possible numerical calculations on model residuals,
by far themost common are bias andMean Square Error (MSE). Bias
(Table 4, ID 4.3) is simply the mean of the residuals, indicating
Fig. 7. QQ plot of model residuals. The residuals are compared against the normal
distribution and deviation from the line indicates different distribution properties.
Data in these examples were from random number generators with the skew and
distribution modified to show the different behaviours.



Table 4
Key residual criteria.

ID Name Formula Range Ideal value Notes

4.1 Residual plot w e e Plot residuals against the predictor variable(s), look for curvature or
changes in magnitude as the predictor variable changes.

4.2 QQ plot w e e Plots the inverse distribution (quantile) function of residuals against
normal distribution quantile function. Look for curvature and divergence
away from the mean diagonal (Fig. 7).

4.3 Bias
1
n

Xn
i¼1

ðyi � byiÞ (�N, þN) 0 Calculates the mean error. Result of zero does not necessarily indicate
low error due to cancellation.

4.4 Mean Square Error (MSE)
1
n

Xn
i¼1

ðyi � byiÞ2 (0, N) 0 Calculates a mean error (in data units squared), which is not effected by
cancellation. Squaring the data may cause bias towards large events.

4.5 Root Mean Square Error (RMSE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðyi � byiÞ2
vuut (0, N) 0 MSE error (4.4) except result is returned in the same units as model, which

is useful for interpretation.

4.6 Mean Absolute Error (MAE)
1
n

Xn
i¼1

����yi � byi���� (0, N) 0 Similar to RMSE (4.5) except absolute value is used instead. This reduces
the bias towards large events; however, it also produces a non-smooth operator
when used in optimisation.

4.7 Absolute Maximum Error (AME) max
���yi � byi��� e e Records the maximum absolute error.
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whether the model tends to under- or over-estimate the measured
data, with an ideal value zero. However, positive and negative
errors tend to cancel each other out. To prevent such cancellation,
the Mean Square Error (Table 4, ID 4.4) criterion squares the
residuals before calculating the mean, making all contributions
positive and penalizing greater errors more heavily, perhaps
reflecting the concerns of the user. The Root Mean Square Error
(RMSE, Table 4, ID 4.5) takes the square root of the MSE to express
the error metric in the same units as the original data. A similarly
motivated measure is the Mean Absolute Error (MAE, Table 4, ID
4.6), but MSE and RMSE are usually preferred because they are
smooth functions of the residuals, a requirement for many opti-
misation methods, whereas MAE has a kink at zero.

A complementary test, preserving the time dependence of the
data is residual autocorrelation analysis. Assuming that any deter-
ministic behaviour in the data is explained by the model, the
remaining residuals should consist of white noise, i.e. with zero
autocorrelation. So if the model “whitens” the residuals it can be
reasonably assumed that all the deterministic behaviours have
Fig. 8. Iterative process aimed at the whitening of the residuals. Autocorrelograms of white

zero if its samples lie in the statistically zero band with limits �1:96ffiffiffiffi
N

p where N is the numb
been included in the model. Conversely, a statistically non-zero
autocorrelation for any lag >0 or a periodic behaviour (see Fig. 6)
indicates non-white residuals induced by unmodelled behaviours.
This reasoning can be summarized in Fig. 8.

4.2.3. Relative error and error transformations
In some studies, all events are not equally relevant for use as

information to support decisions, designs, or interpretation; for
example, in hydrologic modelling, one may be interested in either
low-flow or high-flow conditions. Extremes may be of particular
interest or of none, and may well dominate computed measures.
Transforming the data or errors allows a focus on the aspects of
interest.

Relative errors, error/measured value, weight the metric
towards smaller values since larger ones may only have small
relative error. The majority of metrics already defined can be
calculated on relative errors, as in Table 5. Another option is to
transform the residuals with a standard mathematical function to
accentuate aspects of interest. For example, instead of squaring in
and coloured residuals are shown in the lower part. Autocorrelation is considered to be

er of experimental data points.



Table 5
Residual methods that use data transformations.

ID Name Formula Notes

5.1 Relative bias 1
n

Xn
i¼1

ððyi þ 3Þ � ðbyi þ 3ÞÞ
ðyi þ 3Þ

1
n

Xn
i¼1

yi � byi
yi

Relative equivalent of ID 4.3, which increases the weighting of errors relating to low
measurement values (e.g., low flow conditions in hydrological modelling). Ideal value
is z0 and range �N. 3is a small value required in the event of yi ¼ 0.

5.2 Relative MSE (MSRE)
1
n

Xn
i¼1

0@ðyi þ 3Þ � ðbyi þ 3Þ
ðyi þ 3Þ

1A2 Relative equivalent of 4.4, Calculates the mean of the relative square
errors. Ideal value is z0 and range [0, N).

5.3 Fourth Root Mean Quadrupled
(Fourth Power) Error (R4MS4E) 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼ 1

ðyi � byiÞ4
vuut This approach modifies the RMSE by using the fourth power. This weights the error

calculation towards large events within the record. Ideal value is 0 and range (0, N).

5.4 Square-Root Transformed Root
Mean Square Error (RTRMSE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼ 1

ð ffiffiffiffi
yi

p �
ffiffiffiffiffibyiq
Þ2

vuut RTRMSE uses the RMSE method (4.5), but in this case the data is pre-transformed by
the square root function, to weight the error function towards lower values. The
ideal value is still 0 and range [0, N).

5.5 Log Transformed Root Mean
Square Error (LTRMSE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼ 1

ðlogðyi þ 3Þ � logðbyi þ 3ÞÞ2
vuut In a similar fashion the data in this case are pre-transformed by taking the logarithm

of the data, which increases the weighting towards small values. It is important to
note that this does not handle zero data well. The easiest way to overcome this is to
add a very small ( 3¼ 1e � 6) value to each data point. Due to offset, ideal value
is ¼ 0 and range (0, N).

5.6 Inverse Transformed Root
Mean Square Error (ITRMSE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼ 1

ððyi þ 3Þ�1 � ðbyi þ 3Þ�1Þ2
vuut The Inverse transform operates in a similar method to those previously mentioned.

This method has the largest weighting towards small values and as in 5.5 it needs
zero elements to be dealt with.

5.7 Relative MAE (MARE) 1
n

Xn
i¼1

������ðyi þ 3Þ � ðbyi þ 3Þ
ðbyi þ 3Þ

������
Relative equivalent of the mean absolute error (4.6) Due to offset, ideal value
is ¼ 0 and range (0, N).

5.8 MdARE
Median Absolute Percentage
Error

median

0@������ðyi þ 3Þ � ðbyi þ 3Þ
ðbyi þ 3Þ

������
1A� 100

This approach is similar to 5.7 but it uses the median to reduce the possible
effect of outliers.

5.9 RVE
Relative Volume Error

1
n

Xn
i¼1

ðyi � byiÞ
1
n

Xn
i¼1

ðyiÞ

The relative volume error compares the total error to the total measurement
record. Similar to bias measurements, a low value does not mean low errors, just
balanced errors.

5.10 Heteroscedastic Maximum
Likelihood Estimator (HMLE)

1
n

Xn
i¼1

wiðlÞ½byi � yi�2"Yn
i¼1

wtðlÞ
#1

n

Where the weights are typically calculated by wi ¼ f 2ðl�1Þ
i with fi the expected value

of yi (either yi or byi can be used). l is an a priori unknown shaping parameter necessary
to stabilise the variance and is often adjusted along with the parameters
(Sorooshian and Dracup, 1980).
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RMSE, the fourth power could be used to accentuate large events,
while the square root, logarithm and inverse functions could be
used to accentuate small values. Formulae are presented for
modifications to the RMSE (Table 5), applicable also to other
criteria. For a discussion on the impact of transformations see
Pushpalatha et al. (2012).

Another criterion weighting the residuals is maximum likeli-
hood. Maximum-likelihood estimation (MLE) relies on assump-
tions about the distribution of the residuals, often that they are
normally distributed, zero-mean and constant-variance. When
assuming a heteroscedastic variance (proportional to the magni-
tude of events) this criterion becomes the HMLE proposed by
Sorooshian and Dracup (1980). This reduces the influence of large
events and provides more consistent performance over all event
ranges. A formal likelihood function for correlated, hetero-
scedastic and non-Gaussian errors was recently proposed by
Schoups and Vrugt (2010).

Relative (e.g., volume) error or relative bias of a predicted
attribute compares the total error to the sum of the observations of
the attribute over the time period or spatial extent of interest.
Median absolute percentage error (Table 5, ID 5.8) modifies the
mean absolute relative error (MARE) (Table 5, ID 5.7) by using the
median instead of the mean.

4.3. Preserving the data pattern

Methods that consider each event in time or space as a sepa-
rate item subsequently lose the evident patterns that often exist
in time- and space-dependent environmental data. Adjacent
values can tend to be strongly correlated, in which case this
structure should be taken into account in the model. To test the
ability of the model to preserve the pattern of data, performance
metrics must include consideration of how data points and how
their errors relate to each other.

A simple quantitative and graphical measure is the cross-corre-
lation between measured and calculated values. It measures how
the similarity of the two series varies with delay along one
dimension (usually time). A simple standard deviation test is
calculated to determine if behaviours are significantly similar. In
addition, the cross-correlation can be computed between input
data and residuals (Fig. 9); if a significant correlation is detected,
then it will indicate that some behaviour of the system is not being
accurately represented by the model. For some models (in partic-
ular statistical or regression-based), it is also appropriate to calcu-
late the autocorrelation of the residuals. Significant autocorrelation
may indicate unmodelled behaviour.

Perhaps the best known item in this category is the correlation
coefficient. It is used to indicate how variation of one variable is
explained by a second variable, but it is important to remember it
does not indicate causal dependence. The Pearson Product-
Moment Correlation Coefficient (PMCC), which calculates the
correlation between two series of sampled data and lies between
�1 and 1, is commonly used for model evaluation. Coefficient of
Determination (r2) is a squared version of PMCC that is also
commonly used to measure the efficiency of a model, but only
varies between 0 and 1 (Table 6).



Fig. 9. Cross-correlation function (CCF) plot between effective rainfall and the model
residuals for a hydrological model. Model A shows a significantly larger correlation
between the residuals and input indicating there is more unmodelled behaviour in
Model A. Data were generated from the IHACRES model.

N.D. Bennett et al. / Environmental Modelling & Software 40 (2013) 1e20 11
In hydrologic modelling, the Coefficient of Determination is
commonly known as the NasheSutcliffe efficiency coefficient (NSE
or R2; we use the former notation in this paper to avoid confusion
with r2) (Table 6, ID 6.1) (Nash and Sutcliffe, 1970). It indicates how
well the model explains the variance in the observations, compared
Table 6
Correlation and model efficiency performance measures.

ID Name Formula Ran

6.1 Coefficient of determination/
NasheSutcliffe Model Efficiency (NSE)

1�

1
n

Xn
i¼1

ðyi � byiÞ2
1
n

Xn
i¼ 1

ðyi � yÞ2

(�N

6.2 Cross-Correlation Function (CCF) ccf at lag n :PN
i¼ 1

uiðyiþn � byiþnÞPN
i¼ 1

yiðyiþn � byiþnÞ
acf at lag n :PN
i¼ 1

ðyi � byiÞðyiþn � byiþnÞ

6.3 PPMC
Pn

i¼1ðyi � yÞðbyi � ~yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � yÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðbyi � ~yÞ2

q (�1

6.4 RSqr (r2)
Coefficient of determination

0BBBB@
Pn

i¼ 1ðyi � yÞðbyi � ~yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � yÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼ 1ðbyi � ~yÞ2

q
1CCCCA

2 (0, 1

6.5 IoAd
Index of Agreement 1�

Pn
i¼1ðyi � byiÞ2Pn

i¼1ð
��byi � y

��þ jyi þ yjÞ2
(0, 1

6.6 PI
Persistence Index

1�

1
n

Xn
i¼1

ðyi � byiÞ2
1
n

Xn
i¼1

ðyi � yi�1Þ2

e

6.7 RAE
Relative Absolute Error

1
n

Xn
i¼1

����yi � byi����
1
n

Xn
i¼1

����yi � y
����

(0, N

6.8 RSR
RMSE e Standard deviation ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � byiÞ2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � yÞ2

q (0, N
with using their mean as the prediction. A value of unity indicates
a perfect model, while a value below zero indicates performance
worse than simply using the mean. This criterion was shown to be
a combination of other simple metrics (observed and simulated
means and standard deviations (Table 2, ID 2.2 and 2.6) and the
correlation coefficient (Table 6, ID 6.3)) by Gupta et al. (2009). The
persistence index (e.g., Kitanidis and Bras, 1980) is similar to NSE,
but instead of using the mean as the predictor variable, it uses the
previous observed value as the predictor and is therefore well
suited in a forecasting context.

Another criterion similar to NSE is the RMSE-standard deviation
ratio (RSR), which weights the standard RMSE by the standard
deviation of the observed values and is equivalent to the root
square of 1 minus NSE. This standardises the criterion, allowing
consistent evaluation of models when applied to systems with
different variance inherent in the observed data (Moriasi et al.,
2007).

All the evaluation methods mentioned above suffer potential
bias. A model may have a significant offset and still yield ideal
values of these metrics. The Index of Agreement (IoAD) compares
the sum of squared error to the potential error. Potential error is the
sum of squared absolute values of the differences between the
predicted values and the mean observed value and between the
observed values and themean observed value. IoAD is similar to the
coefficient of determination, but is designed to handle differences
in modelled and observed means and variances.
ge Ideal
value

Notes

, 1) 1 This method compares the performance of the model to a model that
only uses the mean of the observed data. A value of 1 would indicate
a perfect model, while a value of zero indicates performance no
better than simply using the mean. A negative value indicates
even worse performance.
Cross-correlation plots (Fig. 9) plot the cross correlation as a function
of lag, including significance lines. Note that the correct formula for
the cross correlation includes the complex conjugate of the first
term, but this is not needed here as the quantities are real.
In the first case look for any relationship between input (u) and
residuals (there should be none), in the second case look for a shift
between the modelled and measured CCF peaks
(there should be none).

, 1) 1 The Pearson Product moment correlation measures the correlation
of the measured and modelled values. Negatives to this model are
linear model assumptions and the fact it can return an ideal result
for a model with constant offset.

) 1 Squared version of 6.3, with the same interpretation of results,
except range is now (0, 1).

) 1 This method compares the sum of squared error to the potential
error. This method is similar to 6.4 however it is designed to be
better at handling differences in modelled and observed means
and variances. Squared differences may add bias to large data value
events (Willmott, 1981).

e The persistence index compares the sum of squared error to the
error that would occur if the value was forecast as the previous
observed value. Similar to 6.1 except the performance of the
model is being compared to the previous value.

) 0 This compares the total error relative to what the total error would
be if the mean was used for the model. A lower value indicates a
better performance, while a score greater than one indicates the
model is outperformed by using the mean as the prediction.

) 0 The traditional RMSE method weighted by the standard deviation
of the observed values (Moriasi et al., 2007).
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When modelling a chaotic system, it may be impossible to
reproduce an observed time-series, but still possible and desirable
to reproduce observed data patterns. In this case, none of the error
metrics presented in Table 6 will be appropriate. However, most of
the direct value comparisons presented in Table 2 are still relevant.
In addition, graphical comparisons of data patterns, such as auto-
correlation plots and phase space plots may be useful in comparing
the model with observations. In recent years, some authors have
proposed a new family of visual performance measures that are
based on attempts to mimic how the eye evaluates proximity
between curves (Ewen, 2011; Ehret and Zehe, 2011). These criteria
seem very promising, as they avoid traducing model errors simply
in terms of difference of magnitude, and also include time shifts.

4.4. Indirect metrics based on parameter values

Model identification techniques (Ljung, 1999; Walter and
Pronzato, 1997; Norton, 2009) deal with, among other things,
how well the model parameters are identified in calibration. These
techniques help to judge whether a model is over-fitted, i.e. has too
many parameters relative to observed behaviour (e.g., Jakeman and
Hornberger, 1993), and consequently how reliable is the computed
value of the parameters. Attention to model identification is an
important consideration in performance evaluation.

Some of these techniques, especially for models that are linear
in the parameters, give the estimated variance of each parameter
value, and more generally their joint covariance. Although esti-
mated variance is a tempting indicator of the quality of a parameter
estimate, it has to be treated with care. Low estimated parameter
variance signifies only that estimates obtained in an ensemble of
experiments using data with identical statistical properties would
have small scatter. It is only as reliable as the estimates of those
properties are. Moreover, variance alone says nothing about
possible bias; mean-square error is variance plus bias squared.
There is also a risk that, although all parameter variance estimates
are small, high covariance exists between the estimates of two or
more parameters, so their errors are far from independent. Hence
some parameter combinations may be poorly estimated. The
covariance matrix shows directly the correlations between all pairs
of parameter estimates, but eigen-analysis of the covariance matrix
is necessary to check for high estimated scatter of linear combi-
nations of three or more parameter estimates. Keeping these
limitations in mind, high estimated covariance may suggest that
the model has too many parameters or that the parameters cannot
be well identified from the available data. Uncertainty in the
parameters, indicated by high covariance, may translate to
high uncertainty in model-based predictions. In one example,
instantaneous-unit-hydrograph parameters (in modelling of linear
Table 7
Some metrics based on model parameters.

ID Name Formula Description

7.1 ARPE
Average Relative Parameter Error
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7.4 BIC
Bayesian Information Criterion
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7.5 YIC
Young Information Criterion YIC ¼ loge
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þ logeEVN

EVN ¼ 1
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Where nr is the n
P(N) matrix obta
model and param
dynamics from effective rainfall to observed flow) are estimated by
an automatic procedure from the data and have standard errors
which can be used to estimate prediction variance (Young et al.,
1980). This applies to any identification procedure which esti-
mates parameter covariance. If this is not possible, then it is
necessary to estimate the variance in other ways such as bootstrap
or sensitivity analysis, which over a given parameter range will
observe the changes in the objective function, from which the
parameter variance can be estimated.

Other examples of parameter-based metrics are the Akaike
Information Criterion (AIC) (Akaike, 1974), the similar Bayesian
Information Criteria (Schwarz, 1978), originally designed for linear-
in-parameters models to prevent over-fitting with too many
parameters, and the Young Information Criterion (YIC; Young,
2011) (see Table 7). They allow determination of relative ranking
between models, but cannot be used to evaluate how well the
model approximates data in absolute terms. Weijs et al. (2010)
endorse the use of information theory and corresponding scores
for evaluating models, arguing that such approaches maximise the
information extracted from observations.

The Dynamic Identifiability Analysis (DYNIA) approach devel-
oped byWagener et al. (2003) is another parameter-based method.
It uses a Monte Carlo approach to examine the relation between
model parameters and multiple objective functions over time.
Uncertainty analysis is performed over a moving time window to
determine the posterior distributions of the parameters, allowing
for the identification of ‘informative regions’ (Fig. 10) or potential
structural errors in the model. Different optimal parameters at
different times might indicate the model is failing to represent all
modes of behaviour of the system.

Identifiability is a joint property of the model and the input/
output data, concerning whether its parameters can be found with
acceptable uncertainty (Norton, 2009, Section 8.2). Its analysis
poses two questions. First, is the model identifiable in the sense
that all the desired parameters would be found uniquely from
noise-free data by error-free estimation? It would not be if, for
instance, a transfer-function model could be identified but did not
uniquely determine the physically meaningful parameters. That
could be due to it having too few parameters or due to ambiguity,
with no way to decide e.g., which of its poles related to which
physical process. Bellman and Astrom (1970) introduced the idea as
structural identifiability, although a better name is deterministic
identifiability, as it depends on the data as well as the model
structure. Walter (1982) gives an approach for comprehensive
analysis of deterministic identifiability of models linear in their
parameters. Analysis for non-linear models is much harder
(Pohjanpalo, 1978; Holmberg, 1982; Chapman and Godfrey, 1996;
Evans et al., 2002). Tests linking identifiability with noisy data to
ed variance of parameter, ai. Gives an indication of how well model parameters
whether there is over-fitting. Range is (0, N) and ideal value is 0.

ity analysis to determine parameter identifiability by multiple objective
ines optimal parameter sets and parameter identifiability (Wagener et al., 2003)

hts the RMSE error based on the number of points used in calibration, m, and
e parameters, p. The aim of this metric is to find the simplest model possible
-fitting (Akaike, 1974).
AIC (7.3) (Schwarz, 1978)

umber of parameters in the r vector, pii is the ith diagonal element of the
ined from the estimation analysis. YIC combines the residual variance of the
eter efficiency (Young, 2011).



Fig. 10. Example DYNIA plots. The top plot shows for a parameter (b), the temporal
change of the marginal posterior distribution against the observed stream flow. The
bottom plot shows the temporal variation of data information content with respect to
one of the model parameters. Taken from Wagener and Kollat (2007).
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sensitivity in Monod-like kinetics were presented by Vanrolleghem
and Keesman (1996), Dochain and Vanrolleghem (2001), Petersen
et al. (2003) and Gernaey et al. (2004).

The second question in testing identifiability is whether the
uncertainties in the data allow adequate estimation of the param-
eters. The properties of the input are crucial here, in particular
whether persistency-of-excitation conditions are met (Ljung, 1999;
Norton, 2009, Section 8.3), ensuring that the system behaviour
represented by the model is fully excited. A further critical aspect is
the sampling scheme for the input and output, as a too-low
sampling rate may prevent identification of rapid dynamics or,
through aliasing, lead to them beingmisidentified, while a too-high
sampling rate may result in avoidable numerical ill-conditioning in
the estimator. Finally, the presence of feedback may determine
identifiability (Norton, 2009, Section 8.4).

The relationship between identifiability and sensitivity through
the Fisher Information Matrix (FIM) was explored in depth by
Petersen (2000) and De Pauw (2005), and later applied to river-
quality models by Marsili-Libelli and Giusti (2008).

Confidence Region Analysis is a very effective tool for assessing
the reliability of parametric identification. It is based on the
Table 8
Details of transformation methods.

ID Name Formula Description

8.1 Fourier transform and
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8.4 EOF
Empirical Orthogonal Functions
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of a spatial
Typically an
most varian
See Hannac
computation of the covariance matrix of the estimated parameters
(Bates and Watts, 1988; Seber and Wild, 1989; Marsili-Libelli, 1992;
Dochain and Vanrolleghem, 2001) by differing means and on
inferring the model consistency by their agreement or divergence
(Marsili-Libelli et al., 2003; Checchi and Marsili-Libelli, 2005;
Marsili-Libelli and Checchi, 2005). The divergence between the
estimated confidence regions computed in the exact way (Hessian
matrix) and through a linear approximation (FIM matrix) indicates
poor parameter identification.
4.5. Data transformation methods

The transformation of data into different domains is another
technique that can be used for performance evaluation. Trans-
formation can often highlight aspects of a model’s behaviour that
were not clear in the original time or space domain.

4.5.1. Fourier transformation
The most common and best-known transformation is the

Fourier transform which converts data into the frequency domain
(Table 8, ID 8.1). The Fourier transform represents the original
domain vector as a series of complex exponentials, where each
complex exponential can be interpreted as representing
a frequency of the signal (variable) with a magnitude and phase.
Results can be plotted (Fig.11) to allowmodelled and observed data
to be directly compared in the frequency domain. Here, trans-
forming the data can give insights into model performance that
might not be obvious in untransformed data e for instance, the
model may be accurately representing seasonal transitions but
missing some effect that occurs on monthly time-scales. Another
option is to sample model output and observed data at specific
frequencies and calculate their differences. The Fourier transform is
commonly evaluated in terms of the power spectrum, which
squares the magnitude of the transform; the power spectrum is the
Fourier transform of the autocorrelation function (Ebisuzaki, 1997).

4.5.2. Wavelets
An extension of the Fourier transformation uses wavelets.

Unlike the Fourier transform, which uses complex exponentials
defined over the entire original domain (time or space), wavelet
transforms use functions with a finite energy, allowing the trans-
formation to be localised in frequency and temporal or spatial
location (Table 8, ID 8.2 and 8.3) adapting the resolution of the
analysis, both in time and scale, to each portion of the signal. As
a result, model performance can be quantitatively assessed on
different temporal and spatial scales, using wavelets to separate
the Fourier transform, the same length as sequence y and j is the imaginary unit.
ithms are available to calculate the Fourier transform. Signals are commonly
ased on their power spectral density function, which can be estimated
. 11).

the mother wavelet function, dt is the time step, i and s are the scale and
eters. Many possible calculations can be made once the transformation
, please see Lane (2007) for complete details.
the resolution level, g is the filter coefficients from the discrete wavelet
here will be two sets, one for the high pass and one for low pass filter).
tion level can then have performance criteria applied separately (Chou, 2007).
s produces a result which specifies the spaceetime field as a linear combination
basis function, uk, with expansion functions of time ck, over multiple modes (M).
alysis will be completed for only the first couple of modes which explain the
ce. Need to compare both uk and ck to evaluate model performance.
hi et al. (2007) for more details.



Fig. 11. Power spectral density graph of climate model global mean temperatures. The
graph compares the frequency response of different climate models against observa-
tions, taken from IPCC (2001).
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signals and remove interference across scales or between locations.
Wavelet transforms are apt for assessing the temporal and spatial
variability of high-frequency data, such as in situ automated sensor
data or remote sensing data (Kara et al., 2012).

Wavelet analysis (Strang and Nguyen, 1996; Torrence and
Compo, 1998) is based on adapting a set of replicas of an initial
function (mother wavelet) of finite duration and energy by adapt-
ing it to the data through shifting (change of time origin) and
scaling (change of amplitude). The use of wavelet-based transforms
to analyse model performance will be highlighted using two con-
trasting examples. In the first, Lane (2007) uses a discrete
approximation of the Continuous Wavelet Transform (CWT) to
analyse performance of rainfallerunoff model results. In particular,
the localisation feature allows the models to be analysed for errors
that appear at certain times and locations. Once the CWT has been
calculated, several types of analysis can be performed. For example,
the spectrum of the CWT can be calculated (similar to the Fourier
transform PSD), fromwhich error metrics or cross-correlations can
be calculated between the modelled and observed data (Fig. 12).
Errors and potential time lags can be found from the power and
phase data.

Continuous Wavelet Analysis involves analysing a huge number
of coefficients and this redundancy is often confusing. By contrast, if
the wavelet replicas by shifting and scaling are constrained to
powers of 2 (dyadic decomposition), then the original time-series
can be neatly split into low-frequency components (approxima-
tions) and high-frequency details, still retaining the double time-
scale representation. Chou (2007) implements the stationary
wavelet transform, a variant of the discrete wavelet transform
(DWT), to perform multi-resolution analysis. At each step, the
Fig. 12. Example of error plots created using the CWT contour plots of power error (the diffe
(left) and phase difference for simulations (right). The plots show model performance var
captures this internal variability. Taken from Lane (2007).
signal (the discrete wavelet in this case) is passed through specially
designed high-pass and low-pass filters. Through a cascade of
filters, the signal can be decomposed into multiple resolution
levels. Chou (2007) decomposed the calculated and observed
values into different time-scales; model performance could be
quantitatively evaluated at each level. Examples of DWT for signal
smoothing and denoising can be found in Marsili-Libelli and
Arrigucci (2004) and Marsili-Libelli (2006).

4.5.3. Empirical orthogonal functions
Another approach to data transformation is to use Empirical

Orthogonal Functions (EOF), which has been extensively used, for
instance, for analysis of spatial models in meteorology, climatology
and atmospheric science (see Hannachi et al., 2007 for a thorough
review). EOF analysis extends principal-component analysis. For
a spaceetime field, EOF analysis finds a set of orthogonal spatial
patterns and an associated uncorrelated time series (or principal
components). This allows the model to be judged on a spatial as
well as temporal basis (Doney et al., 2007). The orthogonal spatial
patterns explain the variance in the spatial model, allowing iden-
tification of the pattern that explains the most variance, which can
be compared between modelled and measured values. It is also
important to observe how well the model calculates the temporal
(principal) components of the data. Methods have been developed
for various model types and studies, including variations focussing
solely on spatial resolution or patterns correlated in time.

5. Qualitative model evaluation

Despite the power of quantitative comparisons, model accep-
tance and adoption depend in the end strongly on qualitative, and
often subjective, considerations. There may be even more
subjectivity in considering the results of quantitative testing.
Suppose onemodel is superior to another according to one metric,
while it is the reverse according to another metric. What is the
weight to be assigned to individual quantitative criteria in the
overall assessment? How are these weights decided and by
whom? Qualitative assessments may become essential in highly
complex or data-poor situations, when data are scarce or unreli-
able. In such cases, we may be more interested in qualitative
model behaviour that can sketch out trends and system behav-
iour, than in quantitative output that produces actual values for
variables. These qualitative assessments typically involve experts,
defined as those with appropriate extensive or in-depth experi-
ence in the domain, including non-professionals (Krueger et al.,
2012).

Expert opinion can be elicited to provide endpoint estimates to
compare against model results (Rowan et al., 2012; Giordano and
Liersch, 2012), or estimates of uncertainty associated with model
components (Page et al., 2012). A common form of expert evalua-
tion involves peer review of the conceptual model to assess
whether the logic and details of the model matches its intended
rence between wavelet power spectra with simulated error and the original data series)
ying through the dataset and thus an appropriate performance indicator is one that
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purpose (Nguyen et al., 2007; Krueger et al., 2012). Expert opinion
is inherently uncertain and experts even from the same domain
may hold diverse, possibly opposing, viewpoints. Methods are
available for aggregating or finding consensus among multiple
opinions, for example, through evaluating the level of mutual
agreement between opinions (Vrana et al., 2012). However there
are cases where consensus is not the objective, and rather, impor-
tant information lies within the disagreement among experts (Knol
et al., 2010).

In some cases a model is valued not for the accuracy of its
predictive power, but by other outcomes, including community-
and capacity-building, and the ontological and educational func-
tionality that it brings to groups of stakeholders or users who gain
from being part of modelling process (Voinov and Bousquet, 2010;
Krueger et al., 2012). There have been various attempts to evaluate
the modelling process and its usefulness for stakeholders (Campo
et al., 2010). Questions of construction, operation and output of
the model that may be relevant to its adoption cover a number of
issues (Robson et al., 2008; Parker et al., 2002; Risbey et al., 1996),
ranging from uncertainty in model components to unexpected
behaviour and to how it is presented to users. Relevant questions
are:

� Has the user community been clearly identified?
� Does the model meet its specified purpose?
� How reliable are the input data (e.g., measurement error,
sampling rate)? How might this affect model output?

� Does the model behave as expected? How is the model
behaviour affected by assumptions required in development of
the model?

� Is the model structure plausible? Have alternative model
structures/types been tested?

� Has the model been calibrated satisfactorily?
� Is the model flexible/transparent enough for the intended
users?

� Does the model improve users’ ability to understand system
behaviour (compared with nomodel or with a simpler model)?

� Is the model useful as a co-learning tool and can it help
reconcile or synchronize knowledge between various users or
stakeholders?

� Does the model tell us anything new about the system? Are
there any emergent properties that deserve further attention or
that explain known phenomena?

Many of these questions can be answered only qualitatively, but
their answers may be more important in practice than quantitative
performance evaluation. In some modelling communities, this has
led to the development of systematic protocols to ensure
Fig. 13. Results from the NUSAP system. Numerical values are assigned to qualitative fields a
2005).
consideration of both factors. The Good Modelling Practice Hand-
book (STOWA/RIZA, 1999) for deterministic, numerical models and
guidelines for groundwater modelling by the Murray-Darling Basin
Commission (2000) are two examples of checklists developed to
evaluate models systematically.

As demonstrated by Seppelt and Richter (2005, 2006), it is
possible for a particular numerical procedure to produce different
solutions with different modelling packages due to internal coding.
This highlights the importance of careful treatment of model
results and qualitative forms of evaluation. Sometimes it is useful to
assign numerical values to the qualitative answer of each question,
allowing the models to be evaluated numerically or graphically.
One system using this approach is the Numerical Unit Spread
Assessment Pedigree (NUSAP) system (van der Sluijs et al., 2004).
This system combines derived numerical metrics (including some
form of error calculation and spread calculation) with more quali-
tative approaches to assess the performance of the model and the
process generating the model. The results from these multi-criteria
tests are combined onto a single kite-diagram allowing easy
comparison of performance for multiple models (Fig. 13). A similar
methodology was adopted by Devisscher et al. (2006) to assess the
model performance of differing wastewater treatment control
schemes.

6. Performance evaluation in practice: a suggested general
procedure

As pointed out by many authors (e.g., Jakeman et al., 2006),
performance evaluation is just one step of iterative model devel-
opment. Evaluation results may indicate whether additional study
is necessary. If performance is unsatisfactory, then different data,
calibration procedures and/or model structures should be consid-
ered. With satisfactory performance, one may also evaluate
whether simplification or other modification would entail signifi-
cant performance loss. Modelling is an iterative process and model
evaluation is as well. Model evaluation occurs repeatedly at various
stages, helping themodel developers to keep themodelling process
‘in check’ and ‘under control’.

A question that must be addressed when using any of the
performance metrics discussed in Section 4 is: what constitutes
a “good” or “acceptable” match? During parameter estimation, the
aim may be simply to select the model with the lowest error,
whatever its value, but for final evaluation it is often desirable to
have some more objective criterion. This may be a pre-determined
value that an end-user has determined will allow confident
decision-making, or it may be derived by comparison with the
accuracy of other models in a similar setting, such as the statistics
presented by Arhonditsis and Brett (2004) for aquatic
nd a simple kite diagram is used for multi-criteria evaluation (van der Sluijs et al., 2004,
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biogeochemical models. A few authors have attempted to relate
expert judgement and numerical criteria (e.g., Chiew and
McMahon, 1993; Houghton-Carr, 1999; Crochemore, 2011).

Every modelling endeavour has unique goals and challenges, so
there is no ideal or standard technique for evaluation that can be
applied for all models. Even so, it is possible to suggest some
general elements that are beneficial in modelling processes as
summarised in the five steps below. This procedure assumes that
the model is already built. Also, the steps can be linked to existing
modelling guidelines (e.g., Henriksen et al., 2009; Hutchins et al.,
2006; Piuleac et al., 2010; Blocken and Gualtieri, 2012).

Step 1. Reassess the model’s aim, scale, resolution and scope
Themost important step is to have a clear idea of themodelling

purpose: what the model is used for, the decision to be taken, the
understanding we want to improve. This means in turn having
a clear idea of what conditions are being modelled and deter-
mining what constitutes a ‘good’model. In a hydrologic modelling
example, is the modelling objective to reproduce high-magnitude
events or the entire range of events? Is it more important for the
model to replicate aggregated (e.g., monthly, seasonal, annual)
behaviour or individual, perhaps critical, events? Having a clear
idea of the model’s purpose allows a first selection of error
metrics. It helps ensure the metrics are suited to the context of the
model construction, including its assumptions, scales and reso-
lution. Often the model’s aim and scope changes during the model
life cycle and evaluation of performance metrics can sometimes
guide the study in other directions. In order to keep track of model
changes, reflect on its context and communicate its purpose to
new users, it may help to document the model description in
a standardised way, such as that described by Grimm et al. (2006,
2010).

Step 2. Check the data
The second step determines whether sufficient data are avail-

able and how they can be split between calibration and perfor-
mance evaluation. For initial data analysis, a graphical procedure is
suggested to examine the general behaviour of the data. For time
series data, autocorrelation will detect any periodicity or drift,
while calculating the empirical distribution function will give
a better impression of the magnitude of events. It is desirable to
examine a timeedomain plot of events to detect periods in which
events and outliers occur. Autocorrelation can also be applied to
spatial datasets to identify spatial periodicity (e.g., turbulent
eddies) or inhomogeneity. After these tests, the data pattern and
subsets for calibration and testing can be selected with higher
confidence. Subsequent model evaluations must balance the limits
of computing resources and time. For example, a modeller may
decide to reshuffle the data and increase the calibration domain,
often times at the expense of the quality of further performance
evaluations that will be possible.

Step 3. Visual performance analysis
The third step entails visual analysis to judge the model

performance, using graphics, maps, animations and other digital
methods for viewing patterns in data (see Kelleher and Wagener,
2011). There are two main goals: the detection of under- or non-
modelled behaviour and gaining an overview of the overall
performance.

Unmodelled behaviour can be detected by means such as the
residual plot, QQ plot and cross-correlation between the input data
and residuals, all capable of indicating when a model is not rep-
resenting a system’s behaviour adequately. These results can be
used to help refine the model before further evaluation.

In some contexts, simple graphical representation of model
output is sufficient. The great strength of visualisation is that
details can be observed in the results which would have remained
hidden in a quantitative evaluation, or which can help to direct
the tools used for quantitative evaluation. Visualisation takes
advantage of the strong human capacity for pattern detection and
may allow model acceptance or rejection without determining
strict formal criteria in advance. Kuhnert et al. (2006), for
instance, explore the output of a visual comparison in a web
survey of 100 people, together with a variety of algorithms of
spatial comparison.

Step 4. Select basic performance criteria
RMSE or r2 are good initial candidates for a metric as their wide

usage aids communication of the model performance. Thorough
understanding of any weakness of the metric for the particular
purpose is essential.

Even in initial model evaluation, multiple metrics should be
considered in view of the weaknesses of individual metrics (e.g.,
Carpentieri et al., 2012; Smiatek et al., 2012). For example, the
coefficient of determination r2, which can suffer significant offset
error, should be paired with bias. RMSE (or again r2) can be paired
with a selected data transformation to reduce the bias that some
conditions (e.g., large events) introduce into the evaluation. A more
elegant approach would be to use the KGE criterion proposed by
Gupta et al. (2009), in which the bias is an explicit component.

Step 5. Refinements (and back to model improvements and
eventually Step 1 at the next stage)

Once analysis has been completed, it is possible to consider how
exhaustive the evaluation has been. The first set of metrics adopted
is judged against the knowledge gained from visual analysis in Step
3, as well as howwell the current evaluation differentiates between
competing models or interpretations. Depending on the problems
identified, for example, if changes in model divergence over time/
space are not captured by the metrics, then a windowed metric or
a more advanced wavelet analysis may be needed. When a signifi-
cant difference between calibration and testingmodel performance
is detected, calibration data/procedures may have been inadequate,
and sensitivity analysis may help determine which parameters are
causing problems. If significant divergences, for example between
low/high-magnitude events, are not captured by metrics, then data
transformations or multi-resolution methods to highlight the
differences may be adopted. As already pointed out, these refine-
mentsmay entail revision of themodel structure and/or data, so the
procedure may require additional cycle(s).

It is crucial to engage the user community in all these five steps
to the extent possible. Even without the users understanding the
methods in detail, dialogue maintained with users may help the
modeller identify the most suitable performance metrics (Kämäri
et al., 2006). In the end, the user or stakeholder determines
whether model performance is acceptable and the choice of metric
should capture the users’ expectations.

As shown in the previous sections, methods developed in
different application areas can inform practice across disciplines.
More broadly, methodological knowledge from environmental
modelling may benefit from a common classification to reconcile
quantitative approaches to performance evaluation. Additionally,
modern computer software tools allow incremental construction of
a common repository of implemented methods to support perfor-
mance evaluation of a large class of environmental models. At
present, discipline specific examples are emerging (e.g., Olesen,
2005; Gilliam et al., 2005; Dawson et al., 2007, 2010), but a gener-
alised repository of evaluation approaches is needed across the
spectrum of environmental modelling communities. Such a repos-
itory should allow users to select only the methods that are of
interest for their case (avoiding overload from redundant
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information), should allow references to case studies on the
application of different methods, and should be open to additions
and discussion. Given the subjective and qualitative aspects of
model evaluation alluded to above, it may constitute a real
“community” tool for environmental modellers. It would be amajor
step in improving the characterisation of model performance so
that we as a community can enunciatemore explicitly the strengths
and limitations of our models.

7. Conclusions

This paper provides an overview of qualitative and quantitative
methods of characterising performance of environmental models.
Qualitative issues are crucial to address. Not everything can be
measured. However, quantitative methods that make use of data
were emphasised as they are somewhat more objective and can be
generalised across model applications. This includes not just
methods that couple real and modelled values point by point, but
also methods that involve direct value comparison, preserving data
patterns, indirect metrics based on parameter values, and data
transformations. We also stress that observed data are the result of
selection and interpretation. Data for modelling should be assessed
critically in terms of its information content, reliability and
generality.

We proposed a structured workflow to characterise the perfor-
mance of environmental models. The modeller critically assesses
the model scope and purpose, and the quality of the data. A
preliminary performance analysis with visual and other techniques
provides an overview that leads to the selection of simple, general
performance criteria. Appraisal of intermediate results may identify
the need to revisit the previous steps and use more advanced
methods, depending on model aims and scope.

The overview of methods and the suggested structured work-
flow address the growing demand for more standardisation in
evaluation of environmental models (Alexandrov et al., 2011;
Bellochi et al., 2009). This paper aims to provide a common base of
methods with a supporting workflow, rather than a more detailed
evaluation standard. It would be difficult to come up with such
standards given that models are built for various purposes, and the
goals of the modelling effort very much determine the character-
isation of a model. What is good for one application may turn out to
be inadequate for another. For example, a model that is performing
quite poorly in terms of simulating daily dynamics can do a very
good job in describing the annual trends, which could be exactly
what is needed for a particular decision analysis. In principle an
evaluation standard should then contain both a characterisation of
a model and a description of the case study, the goal of the model.

No matter how the model is used, it is still always good to know
how it performs compared to the datasets that are available. Our
main message is that characterising model performance should be
considered an iterative process of craftsmanship. The selection of
tools for a given context requires both expertise and creative skill.
To produce a model that fulfils both modeller and stakeholder
expectations, cooperative dialogue is needed, perhaps crossing
multiple disciplines or areas of knowledge. In order to guide this
process, a modeller cannot afford to restrict themselves to one
standard recipe. “If all you have is a hammer, everything looks like
a nail”. A modeller needs to have a firm grasp of the broad range of
available methods for characterising model performance. We hope
that this paper will be a useful contribution and reference.
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